
BEE 271 labs

Nicole Hamilton
https://faculty.washington.edu/kd1uj

https://faculty.washington.edu/kd1uj

Background
Jun 16: Spring grades in to the registrar. BEE 271 had
only 10 students and was expected to be cancelled.

Jun 18: Learned the class was on and that the old
version of Quartus needed to use our old Terasic FPGA
boards with lab 1 would no longer run on our PCs.

Jun 19-21: Hurriedly created a lab 1 out of whatever
TTL parts I could buy enough of off the racks at Fry’s.

Jun 22: First day of instruction.

Jun 29: The best replacement was clearly the new but
not yet shipping DE1-SoC. When Terasic promised they
could ship 14 boards immediately, we ordered the
same day.

Jul 1: Boards arrive.

Jul 3-5: Created lab 2, the adding machine assignment.
The next two weekends, I wrote lab 3, which I’ve since
split into two assignments.

Jul 6: The class would need a lab 2 assignment.

June 2015
S M T W T F S

1 2 3 4 5 6
7 8 9 10 11 12 13

14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

July 2015
S M T W T F S

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Terasic DE1-SoC
FPGA

Altera Cyclone V SoC
85K programmable logic elements
64 MB SDRAM

Hard processor system (HPS)
Dual-core ARM
2 hard memory controllers
Runs Linux and “bare metal” apps

Board
6 seven segment displays
10 switches
10 LEDs
4 pushbuttons
2 40-pin GPIO headers
1 GB DDR3 SDRAM
+ Micro SD, USB, Ethernet, VGA,
ADC, keyboard, mouse, audio, video

Boot Ubuntu from an Micro SD card as a command
window via PuTTY.

With a keyboard, mouse and VGA display, it runs
the Ubuntu desktop.

Download and run the full GCC toolchain, Firefox
browser and anything else you like.

Possible very cool microprocessor course project

Build a memory-mapped device and the device driver to go with it.

1. A bare metal app in C built with DS-5 and running in the ARM.
2. A memory-mapped device in Verilog compiled with Quartus and

programmed into the FPGA.
3. Simplest form: memory-mapped control and data registers only.
4. Bonus: add interrupts and interrupt service routines.

Biggest problem: I first have to figure out how to do it myself and the
documentation is horrible!

Software environment

Quartus Prime
The Intel/Altera IDE for compiling Verilog to the FPGA, including
SystemBuilder to create a new DE1-SoC project.

SignalTap II
A remote logic analyzer that can be compiled onto the FPGA
along with your own code.

ModelSim
The Verilog simulator.

DS-5
Not used in 271, this is the Eclipse-based ARM IDE for developing
and debugging “bare metal” apps. (We have 100 floating
licenses that can be used even from home with Husky OnNet.)

2. Hex adding machine.1. Digital logic devices.

4. Keypad debouncer.3. Keypad scanner.

Four labs

Four group exercises

2. Creating and running a new
Verilog project using Quartus.

1. Using the lab instruments.

3. Using the ModelSim simulator. 4. Using the SignalTap II logic
analyzer.

BEE 271 lab kits

830-point (full-size)
breadboard

Precut and
preformed
breadboard jumper
wires

16-key numerical
keypad

3-piece 20 cm
multicolored 40-pin
jumper wire
“Dupont” ribbon
cable set

Texas Instruments
SN7400N Quad
NAND or equivalent.

Texas Instruments
SN7402N Quad NOR
or equivalent.

Texas Instruments
SN7404N Hex
Inverter or
equivalent.

Texas Instruments
SN74LS86AN Quad
XOR or equivalent.

3 Generic 470 ohm,
1/4 watt, 5%
resistors

4 Generic 10K ohm,
1/4 watt, 5%
resistors

3 Generic red LEDs

Lab 1 Digital logic devices
For many students, 271 is their first
EE class and their first time in the
lab. They’re fascinated by all our
wonderful and very expensive
instruments and they want to know
how electronic stuff works.

Learning objectives

1. Learn how to use our lab
instruments.

2. Make a connection between
Boolean algebra and the circuits
we use to build things.

3. Learn how ones and zeros are
represented as voltages in the
TTL standard.

4. Brief explanation of how TTL
circuits work.

5. Breadboard and successfully
debug some simple TTL circuits
using inverters, NANDs, NORs and
XORs.

8. Be able to construct truth tables
for NAND, NOR and XOR
functions.

9. Measure the output levels
associated with 1s and 0s and
determine what a float looks like.

10.Measure the input switching
thresholds rising and falling.

(We do this as a group.)

13.Understand propagation delays
and how to measure tPHL, tPLH,
tRISE, tFALL.

7404N

VoutVin

A B

Ext Trig
+

+

_

_ + _

Function
generator

Oscilloscope

tPHL = 3.6 ns

14.Learn the meaning of active low
and active high.
(The 7-segment displays they’ll
encounter in lab 2 are active low.)

15.Build a ring oscillator and relate
the frequency to propagation
delays.

15.Learn how a latch works.

16.Challenge them to explain the
behavior of a static 1 hazard.

Lab 1 Instructor’s notes

Example expected results, including
screenshots and answers to the
questions.

13 pages.

Lab 1 reflections

1. Students report on surveys that they like the
breadboarding exercises.

2. Students are more unprepared to use the instruments,
read a schematic or wire up a simple circuit on a
breadboard than I’d have expected.

3. I’d have expected more to have played with electronics as
a hobby or to have technician experience.

Lab 2 Hex adding machine
This is a purely combinatorial
Verilog project in Quartus.

1. Two 5-bit numbers, A and B, are
entered on the 10 switches.

2. A, B and the 6-bit result C = A + B
are displayed on pairs of seven
segment displays with leading
zero suppression.

Learning objectives

1. Basic familiarity with binary
numbers and hex notation.

2. Ability to create a simple Verilog
project in Quartus, compile it
and program the FPGA.

A close-up of what they build

3. Ability to create a truth table for
a desired function.

4. Ability to use a Karnaugh map to
create an SOP or POS solution.

(Mercifully, I’m skipping pages.)

5. Use the SystemBuilder tool to
create a template project.

(We do this as a group in the lab.)

The DE1-SoC SystemBuilder utility

6. Open a project in Quartus and
add the Verilog file.

7. Wire the switches to the LEDs
and to one of the 7-segment
displays.

Switches wired to the LEDs

8. Successfully compile their code
and program the FPGA.

We get to here as a group

9. Add the basic skeleton for the
seven segment decoder and
instantiate one copy.

10.Fill in equations for segments 1
through 6.

Basic skeleton

On their own to solve remaining
design problems

1. Instantiate copies of the 7-
segment decoder for each of the
displays.

2. Implement C = A + B.

3. Split the bits for A, B and C
across the 6 displays.

4. Suppress leading zeros.

Demo and submit Karnaugh maps
and code.

14 pages.

Lab 2 reflections

1. The students like the exercise and most complete it without much help.

2. They like building something and that it’s more satisfying than
homework as a way to learn Karnaugh maps. It works or it doesn’t and
they can keep at it until it does.

3. Compiles are very slow and often hang. We need much faster lab
machines.

Lab 3 Keypad scanner
This is a sequential logic project.

1. Scan a hex keypad to determine
when a key has been pressed.

2. When a key is pressed, display it
and increment a 16-bit count.

Learning objectives

1. Ability to solve a simple
sequential logic problem.

2. Understanding of an actual
application, how a keypad is
read.

3. Rotate a 0 across the columns at
some reasonable scan rate.

4. If a row goes to zero, a key at the
intersection has been pressed.

Row0

Row1

Row2

Row3

Col0 Col1 Col2 Col3
25KΩ
pullups

3.3VZ Z Z0

0

1

1

1

Columns driven as outputs from the FPGA

Rows read as inputs
with on-chip pullups

module Scan(input CLOCK_50,
output [9:0] LEDR);

reg [31:0] counter;

assign LEDR = counter[26:25];

always @(posedge CLOCK_50)
counter <= counter + 1;

endmodule

5. Starts with a simple counter tied
to the LEDs and discussion of
how fast they’ll blink.

6. Example turned into a one-hot,
which has to be modified by the
student.

module Scan(input CLOCK_50,
output [9:0] LEDR);

reg [31:0] counter;
reg [3:0] onehot;
wire [1:0] columnNumber;

assign columnNumber = counter[26:25];
assign LEDR = { onehot, columnNumber };

always @(posedge CLOCK_50)
counter <= counter + 1;

always @(*)
case (columnNumber)

0: onehot = 'b1000;
1: onehot = 'b0100;
2: onehot = 'b0010;
3: onehot = 'b0001;

endcase

endmodule

7. On-chip pullups are added with
the Assignment Editor.

8. Create a Scan module.

module Scan(input CLOCK_50,
inout [7:0] keypad,
output reg [3:0] rawKey,
output reg rawValid);

9. Instantiate their Scan module
and tie it to the GPIO.
wire [3:0] rawKey;
wire rawValid;

Scan sc(CLOCK_50,
{ GPIO[25], GPIO[23],
GPIO[21], GPIO[19],
GPIO[17], GPIO[15],
GPIO[13], GPIO[11] },

rawKey, rawValid);

10.Add a counter, 7-segment
displays and a reset.

11.They should observe that keys
sometimes bounce.

12.Demo and submit the code.

Lab 3 reflections

1. The students like the exercise and are intrigued to learn how a simple
keypad works but find it deceptively difficult.

2. If they have trouble, it’s in:

a) How to stop advancing to the next column if they’ve discovered a
key that’s pressed.

b) How to translate row and column coordinates into a hex key code.

3. Sadly, some of the keypads don’t bounce very much.

Lab 4 Keypad debounce
This is a sequential logic project.

1. Build a new module that will
debounce the raw keys.

2. When a key is pressed, shift the
displays and add it.

Learning objectives

1. Ability to solve a slightly more
difficult sequential logic
problem.

2. Understanding of how to use
hysteresis to debounce a signal.

3. Understand the concept of
hysteresis as a way of
debouncing a signal.

4. Create a debounce module that
can take in a raw key and output
a debounced key.

module Debounce(

input CLOCK_50,

input [3:0] rawKey,

input rawValid,

output reg [3:0] debouncedKey,

output reg debouncedValid);

Only 3 pages.

5. Demo and submit your code.

Lab 4 reflections

1. Least amount of how-to guidance.

2. Deceptively difficult for most students.

ModelSim group exercise
ModelSim is Altera’s Verilog
simulator.

When I taught EE 271 in Seattle, I
liked the way Scott Hauck was using
ModelSim in his labs.

What he didn’t have was a stand-
alone turnkey tutorial.

Three examples as a .zip file.

1. The seven segment decoder
from the lab 2 adding machine

2. Several 2-to-1 muxes
3. Two simple counters

SignalTap II group exercise
On-chip logic analyzer that can be
compiled onto the FPGA along with your
design.

SignalTap II

	BEE 271 labs
	Background
	Terasic DE1-SoC
	Slide Number 4
	Slide Number 5
	Possible very cool microprocessor course project
	Software environment
	Slide Number 8
	Four group exercises
	BEE 271 lab kits
	Lab 1 Digital logic devices
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Lab 1 Instructor’s notes
	Lab 1 reflections
	Lab 2 Hex adding machine
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Lab 2 reflections
	Lab 3 Keypad scanner
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Lab 3 reflections
	Lab 4 Keypad debounce
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Lab 4 reflections
	ModelSim group exercise
	Slide Number 49
	SignalTap II group exercise
	SignalTap II

